Constitutive Modeling and Impact Simulation of Random Carbon Fiber Polymer Matrix Composites for Automotive Applications
نویسندگان
چکیده
Damage constitutive models based on micromechanical formulation and a combination of micromechanical and macromechanical effects were developed by the authors to predict progressive damage in aligned and randomly oriented carbon fiber polymer composites. The models are extended in order to account for the microcrack effect on the mechanical behavior of the composites. Progressive interfacial fiber debonding models are considered in accordance with a statistical function to describe the varying probability of fiber debonding. Finally, the complete progressive damage constitutive models are implemented into the finite element code DYNA3D to perform impact simulation of random fiberreinforced composites for future use in advanced automotive materials. The implemented model is applicable for shell and solid elements in threedimensional analysis, as well as axisymmetric elements in two-dimensional analysis. In addition, the numerical incorporation allows a prediction of the mechanical response of large composite structures under stress or during impact and eliminates the need for expensive, large-scale experiments.
منابع مشابه
Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites
An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملMechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber
Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube in a polymer matrix and its surrounding interphase is replaced with an equivalent fiber for predicting the mechanical properties of the carbon nanotube/polymer composite. The effects of an interphase layer between the nan...
متن کاملA Micromechanical Constitutive Model of Progressive Crushing in Random Carbon Fiber Polymer Matrix Composites
A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs). To estimate the overall elastoplastic damage responses, an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroid...
متن کاملEvaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کامل